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THEORY OF ELECTROMAGNETIC INSTABILITY OF AN INTENSE BEAM
IN A QUADRUPOLE FOCUSING SYSTEM

I. Introduction

Discrete quadrupole focusing systems, also called FODO lattices, have been used to

transport charged particle beams for a variety of applications. A FODO lattice is an alter-

native to helical quadrupole windings for strong focusing. Helical quadrupole (stellarator)

focueing systems have been found to be subject to an electromagnetic instability, which we

referred to as the three-wave instability. -3 This has been observed experimentally for a

325 A, 950 keV beam with an 80 nsec pulse length.4 In that case, the stellarator gradient

was 400 G/cm, the stellarator pitch length was 18 cm, and the axial magnetic field was 1.2

kG. The growth of the instability and subsequent beam loss was accompanied by 3 GHz

radiation, as predicted by theory.

Here, we consider the corresponding instability for transverse perturbations of a beam

centroid interacting with a FODO lattice field and a TE11 waveguide mode. The advan-

tages of using FODO lattices are: (i) variations in periodicity are easily introduced, (ii)

variations in periodicity can change the character of electromagnetic instability and re-

duce the overall growth rate, (iii) lower growth rates in some regimes and (iv) preliminary

particle simulations show saturation at low values. Even though the FODO lattice lacks

a stable regime, the small growth rates may allow a cure by any one of several methods,

such as loss in the waveguide.

The dispersion relation may be solved in the usual way, with the growth rates being

the imaginary parts of the roots of the determinant of a dispersion matrix. Due to the

periodicity of the FODO lattice, however, the dispersion matrix is of infinite dimension.

This instability '6 was recently analyzed via Floquet theory5 and via approximate disper-

sion relations based on two different approaches.,' 6 In this paper, we derive the dispersion
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relation and show that the exact growth rate, in agreement with the results from Flo-

quet theory, can be obtained from a truncated dispersion matrix. Furthermore, we are

able to approximately factor a zeroth-order form of the dispersion relation to find all the

beam modes. Identifying the beam mode that causes the instability, we are able to derive

analytic expressions for the growth rates and establish various regions of instability.
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I. Dispersion Relation

We consider an alternating gradient quadrupole field (Bq, Bqy), where

Bqz = -Bqkqf(z)y, BqV = -Bqkqf(z), (la - b)

Bq kq is the peak quadrupole field, f(z) is periodic, kq = 2 7r/Aq and Aq is the period of the

quadrupole field. The representation for the quadrupole field in Eqs. (la-b) is valid near

the z-axis, i.e., (z 2 + y 2 )1/ 2 << Aq/ 27r.

In equilibrium, the electron beam travels along the axis of a perfectly conducting

circular waveguide of radius r9 at velocity v. and is monoenergetic with -y. = (1 -_#2)-1/2,

where fo = vo/c. Both the beam radius and beam centroid displacement are assumed to

be small in comparison to the waveguide radius. We include induced image charges and

currents due to the displaced beam. The induced electric and magnetic fields near the

z-axis are

e(d = -2 mc -Z Y e), (2a)
e r

Bind = 2 m -c2  (2b)
e

where zc(z 0 ,z) = z .(Zo,t = (z-Zo)/V0 ) and yc(zo,z) = yc(z,i = (z-z.)/vo) are the beam

centroid coordinates, v = w2r2/4C2 is Budker's parameter, (v _ II/17/ for an electron

beam where I. is the electron beam current in units of kilo-Amperes), W2 = 47re 2 n./mo,

ne is the electron density, mo is the electron mass e is the elementary charge (assumed

positive), rjb is the beam radius and zo is the axial position of the electron at t = 0.

We expect the TE11 mode to have the largest growth rate because its electric field

peaks on axis. It vector potential can be written as

A = [A,(r,0,z)e, + A,(r,, z)4,] e- tw + c.c.
(3)

= [A+(r,,, z) + A(r, 0, 
z)] e- iwt + c.c.,

where

A-(r,0, z) Jdk-b-l1(k-) [Jo(p,1s"r)e-± + J 2 (/I11r)e"i 2 o8:l] eik ± z

3



A, are complex amplitudes associated with the (+) right-handed circularly polarized

(RHCP) wave and (-) left-handed circularly polarized (LHCP) wave, J,, is the nth order

Bessel function, b±11 are complex constants, w is the radian frequency, k± are the wave

numbers associated with the RHCP and LHCP waves, 6± = (i. ± i4)/2 and c.c. denotes

the complex conjugate. The boundary condition, requiring the tangential component of the

electric field to vanish on the perfectly conducting waveguide surface, gives the condition

J,(r = plrg) = 0, where 1L11r. is the the largest positive zeroth of Bessel function J1 and

denotes d/dr.

The wave equation for A is given by

( V 02 1 2 )A= 4j
V + Z: 2 o A- J5jJc _(4)

where V_ = V 2 - 8 is the transverse Laplacian, and Je = -ene 7rr 2V is the macroscopic

transverse current associated with the beam centroid. Assuming that the particle motion

is driven by field on axis, the current can be written as

= mOC2 b(X)(y)(5c dy(

e di dt~

where [z(z, t), Yc(z, t)] are the coordinates of beam centroid.

The wave equation can be rewritten as

L [(a ± ia')e-' + c.c] = -47r b(z)(y)-(C iYO), (6)

where a,,, = (e/mc 2 )A,,, and L = V2 + 152/(z 2 + W2 /c 2 .

The vector potential in (6) has the form

(a ia,)e-iwt - e 2 dk~b:F11(kF)J.(AIzlr)e i(khfzwt)

M J (7)

+ e 2 ] dk±lb. 11(k±)J2 ( I r)e ieei(k* z-wt )

After L operated on the norm',zed vector potential, Eq. (6) can be written as

e d e - k- A2)1 J.(AI1 r)bTl(1(k:)
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+ Jdkeik*z (4 - 2 - AL ) J 2(Al~r)e i2°b±I(k±)] + c.c.

V d

There are two equations associated with (8). We multiply the equation with the upper

sign by f ' de/27r fo" Jo(A 1 r)rdr and the equation with the lower sign by f: et2 OdO/27r

f" J 2(Pllr)rdr, then combine the results to pick out b- 11 . Similarly, we multiply the

equation with the upper sign by fL e- dO/27r fo J 2(plr)rdr and the equation with

the lower sign by f7! dO/27r fo J0 (All r)rdr, then combine the results to pick out b+11.

The results are

eit [Jdk:FeiFz ('- ) b:u(IcF)] ± C.C. = - o di(XC±iYc), (9)

where I,, = A-2 (A2 1 rg 2- 1)J,(tAlirg). Let

(XC ±iyc) = Jdk ±(k±)e(k±z- &'t ) + c.c.. (10)

We substitute Eq. (10) into the wave equation, Eq. (9), to obtain a pair of equations that

relate b:Fll to +. Keeping in mind that the variable of integration is a dummy variable in

each case, we solve for b+11 and b- 11:

2v mc 2  W-vok - (11)
b:Fl~k =-iClle (W2/C2 - V2 - -2 *()

Next, we need to solve for the dependence of particle motion on the radiation field.

We assume that z 2 + y2 < r2 such that the centroid motion depends only on the field on

axis. The beam centroid equation of motion can be written as

( .2 8 0) (2Xc ± iYC) + niqkqvfz(c i )

C ( VO 0 ) . .. ±ia)Ir=oe -i&t + c.c.] (12)

where k, = 2v/(#0,-y'r2), and fZq = eBq/Yomoc.

Returning to the quadrupole field, Eq. (1), let

f(z) = f cos(nkqz). (13)

5



For simplicity, we keep only the n = 1 term of the expansion. Substituting (7) and (10)

into (12), we group terms with the same electromagnetic wave number k and evaluate the

fields on axis. We solve for 4±, in terms of b:ii.

[-(W - vok) 2 - kv!] &(k) + nqkq(f/2)vo [,(k + kq) + ;(k - k,)]

*c e
- 2(W -( Vk)b:l,(k). (14)

lo moc2

We substitute (11) into (14), to obtain

S~,k4±() fqkq fl [4: (k + k,) + : (k - k,), (15)
2v0

where

S(w,k) = (w/vo - k) 2  1 + ( kbc2 _ k L _ (16)

and k2 = 2 v/-yoIli. Eliminating _, we find that the longitudinal waveguide modes are

coupled:

Tn(w,k) +(k) -K d [S,-+(k + 2k) + SM+14+(k - 2kq)], (17)

where

S,(w, k) = S(w, k + mlk,), (18)

'm(w, k) = Sm , S, sS+I - IK" [S.-I + S,+11, (19)
2

KJ = Kqkqfi/v/2 and Kq = flq/vo.

From Eq. (17), the dispersion relation for the TE 1 mode in the presence of the beam

is a function of the determinant of an infinite tri-diagonal matrix of the form

' 0 0 ...

" T- 2  S .S-, 0

det... -S+i T -S_ ... =0. (20)
22

0 2 S+ 3  T+ 2

0 0

It can be shown from Eq. (20) that the growth rate of the instability is periodic in

k. For a given unstable frequency w,,, the unstable wave numbers are at all k = ko + nkq,

6



where n = 0, :.is an integer, and k0 is the unstable wave number associated with a

vacuum waveguide mode. Coupling to an infinite number of modes may be avoided in the

approximation that
4K L <s< 1. (21)

kq

It will be shown below that 2h-- < 1 is required for phase stability. To zeroth order, the
k99

approximate dispersion relation is

TO = 0. (22)

To first order, we find

T-2 2ji 0..

det - S+I To 0. (23)

2 S+3 T+2

7



I1. Analytical Beam Line Decomposition

Much insight can be obtained from analytical decomposition of the approximate dis-

persion relation, Eq. (22). This can give us analytical expressions for the growth rates

and instability boundaries in parameter space.

The dispersion relation can be rewritten with the current coupling terms grouped

together in a term ,

W-aWoW+IIo = &0, (24)

where

W. (w, k) = (w/c)2 - (k + m ) - 11, (25)

(w, k) =a2a2 2 _1- Kd [a 2+ 1 +a_ ](26)

am(w, k) = w/vo - (k + inke), (27)

and

,k m mkQ,+ I _ [ W+ I W - I + Wm Wm- I + Wm Wm+

-k'(Wmi_ + Wm + Wm+,) + k4)

- k2K.W2 wd [a WM.+wi + a2, __.WM+I]. (28)

The polynomial HO can be rewritten as

HOI(w,k) = (aO - k,) 2A0 - 2kKda0, (29)

where

r/k\q( 2)] r kq ) 2 ( 2 )]l

A good approximate beam mode decomposition can be obtained by dropping the last term

of (29), since Kd/k is typically much less than 1. There are six waveguide modes, i.e.,

W- 1 WOW+1, and there are six beam modes. The four beam modes in (30) have the same

characteristics as those in the helical quadrupole case.2

The beam line decomposition helps to define the approximate boundaries separating

the orbit instability and the electromagnetic instability.

8



Orbit Instability

As in the helical quadrupole case, the electron beam develops orbit instability, when

kq/4 < K2, (31)

with or without electromagnetic modes in a waveguide. This is confirmed by the numerical

solution of the complete dispersion relation (23) and by particle simulations.

Electromagnetic Instability

Electromagnetic instability exists at the intersection of the

W 1 I(w,k) = 0 (32a)

waveguide mode a-d the

+( (-kq/2 + /kq/4 -K)-wvo =0 (32b)

beam mode. This instability is repeated for all wave numbers, k = ko ± nkq, where

n = 0, ±1, ±2,... When the intersection does not exist, we find that the beam is still

unstable for
p= +kq k 2  < '(

-+ 4-K < - (33)

but the growth rate is much smaller.

In the limit of zero beam current, a stability diagram based on Eqs. (31) and (33) is

shown in Fig. 1

9



IV. Analytical Expressions for Growth Rates and Group Velocity

Following the same procedure as outlined in Ref. 2, analytical expressions for the

spatial or temporal growth rates of the electromagnetic instability can be obtained. The

derivation for the spatial growth rate is presented first. Electromagnetic instability occurs

at a frequency and wavenumber, (wa, k,), which satisfies (32a) and (32b), i.e., frequency

w. satisfies

(wa/c) 2 - / t + klq = (wa/vo) - kq/ 2 - /kq/4 - Kd, (34a)

and the corresponding wave number is

ka = (wa/C)2 - 211 + lkq. (34b)

The derivation of the spatial growth rate is given below. The dispersion relation (24)

can be rewritten as

(k2 - k02)((k + kq) 2 - k02)((k - kq) 2 - ko2)

{(k - k2)2[(k - k4 )2 _ Ak12][(k - k4 )2 
- Ak]- + 2kqK4(k - kl)} = -&o, (35)

where, at w = Wa,

&0 (k) Ck-(k - kl) 2 (k )2 (k - I)2 {(k 2 - k0)((k ± kq)2 - k2)

-k2[(k 2 _ k2o) + ((k + kq) 2 - k2c)]} (36)

k K K,(k2 _ ko)((k + kq) 2 oA)(k - )2
2

ko = v(-lc)2 - p21, ki = w/vo, k2 = (wIVo) - kq, k3 = (wI o) + kq, k4 = (WVo) + kq/ 2 ,

Ak, k/4 - K , and Ak2 = / /4+K .Defnngk = ko+k,+6k, the imaginary part

of Sk is the spatial growth rate. Requiring ko + kq = k4 - Ak1 and using the approximate

beam modes (32b), the zeroth order dispersion relation (35) can be approximated by

p.Sk2 + Pbk + a = 0, (37a)

where

p, = 4AkI(Ak 2 - Ak2)ko(k - k2)
2 (k 2 - k2 )((k + kq) 2 - ko2)jk=k., ="., (37b)

10



Pb = 4kqKd(k - kl)ko(k - k 2 )2 (k 2 - k2)((k + kq) 2 - k 2)1 = k,,=wo, (3 7 c)

and

& = 0Oh=k.,c=w. (37d)

The derivation of (37a) assumed 5k < 2k0 and 6k < 2Akl. The analytical growth rate

expression evaluated at (w,, kG) is

Im(6k) = V(pb/p.) 2 /4 - a/p.. (38)

We can also give the analytical expression for the temporal growth rates. The disper-

sion relation (24) can be rewritten as

(2 _ 2-)(2 2 0)(W2 _

(w -w 4 )2 [(w wq) 2  Aw2][(w wq) 2 _wJ- 2kqK, (w ws) (
....... W ) n . 6 a o a ( 3 9 )

where, at k = k.,

S0(W) -- b( - w2_)2(W 2 _(W )2 (2 _ 2)(WI -W2)

k 2

- .[( 2 _W)+ (W2-')} (40)

kb2K 4 2  W2)(W2 _ )2

_ (k - kq)2 + c, wo = I/2 + h1 C, W, = (I + kq) 2 + A4hc, ,2 = (I - kq)Vo,
= kvo, w4 = (k + kq)vo, Wq = (k - kq/2)vo, Awl = k2/4-K vo, and Aw 2

/k/4 + K21 0 . Defining w = w-_ + 6w, the imaginary part of 6bw is the temporal growth

rate. Requiring w- 1 = Wq + AwI, the analytical temporal growth rate expression can be

simplified to

Im() = Vqb/4- q (41a)

where

4 , (w -,W3)
9b c PokqKd Awl(Aw2 - -)(w - w4 )2 ,,,_,(41b)

11



and
c1006

qC 0 ) 2° (41c)
4Awl(AW --W) 

From our numerical solutions of the higher order dispersion relation (23) we conjecture

that when a higher order dispersion relation, such as (23), is considered, spatial and

temporal growth rates at other intersections in (w, k) space of waveguide modes and other

beam modes will collapse to expressions similar to Eqs. (35) and (41). (These intersection

occur at w = w. and k = k. ± nkq).

Because the beams have a finite length and because the group velocity of the instability

is slower than the beam velocity, the instability can propagate out of the tail of the beam.

From (38) and (41a), dropping the Pb and qb terms, the group velocity of the instability is

, /(( 2/C)2 _ ;L2 )21/2 )1/2

Vg = 6w -l ( W'/c 1 (42)

The number of e-folds, N, that can occur within a beam of length 4b is

N = mn{L L ( b } (43)=~L ran' L,(Vb - Vg)l~bI

where L. = 1165k is the e-folding distance, L is the total distance traveled by the beam

and Vb is the beam velocity.

12



V. Numerical Examples

Here, the dispersion relations (22) and (23) are solved numerically. We verified that

i) Eq. (22) is a fair approximation to (23),

ii) the approximate beam mode decomposition Eq. (29) of (22) is good,

iii) the boundary of instability is as predicted by Eqs. (31) and (33) and

iv) analytical growth rate expressions are in good agreement with the results from

(23).

Parameters for numerical examples are typical of a high-current, induction-accelerator

beam, Ie = 1 kA and -y = 5. We chose a quadrupole gradient of Bqkq = 221 G/cm,

fl = 4/r, quadrupole wave number of kq = 0.5 cm - 1 and the waveguide radius of r. =

3 cm. These parameters fall in the electromagnetic unstable regime in Fig. 1, where

V/uj/(-2 - 1) = 0.125 cm - 1 and P = 0.448 cm - 1 (see. Eq. (33)). Figure 2 plots the

(w, k) diagram corresponding to the zeroth order approximation to the dispersion relation,

Eq. (22). The solid circle in Fig. 2 marks the instability denoted by Eqs. (32a,b). The

instability encircled by the dashed curve is an erroneous one. It is modified when higher

order expressions for the dispersion relation are solved. Figure 3 plots the first order

approximation to the dispersion relation Eq. (23).

Figure 4 plots of the spatial growth rate as a function of wave number, k, for W > 0

from (23). The instability is periodic in k. The growth rates of all the instabilities are

identical, except one. The instabilities at (k Z, k0 - kq and k !- k0 - 2 kq) are from coupling

to T+2, where k0 - 0.22 cm - 1 . The instabilities from coupling to T- 2 (not shown) are

at (k " ko + 2 kq and k a_ ko + 3 kq). The instability at (k !_ ko - 2 kq), similar to the

instability marked by the dashed circle in Fig. 2, is erroneous, and is modified to give

the same growth rate as that at k0 + kq as more terms of the full determinant (20) are

included.

Figure 5 plots the spatial growth rates as a function of frequency w/c. for W > 0

for i) zeroth order approximation from Eq. (22), dashed (- - -) curve, ii) first order

approximation from Eq. (23), solid (-) curve, iii) exact growth rates from Floquet

formulation,5 (+ symbols) and iv) analytic growth rate expression from Eq. (38), (e

13



symbols). The growth rate of the zeroth order approximation, the first order approximation

and the Floquet formulation are in excellent agreement.

The unstable beam mode given by Eq. (32b) is in excellent agreement with the line

in (w, k) space in the dispersion diagram obtained by numerically solving the dispersion

relation. Two of the six beam modes given by Eq. (29) are not as accurate. One of

these two beam modes appears on the left-hand-side and one of these two beam modes

appears on the right-hand-side of Fig. 2 Since the incorrect beam modes are not the

unstable beam mode of interest and are sufficiently far from the unstable beam mode, the

analytical growth rate expressions are in good agreement with the numerically obtained

growth rates shown in Fig. 5.

Figures 6, 7, and 8 vary the quadrupole gradients while keeping all other parameters

the same as that used for Fig. 2. Figure 6 compares the numerically (-) and analytically

(e) obtained spatial growth rates for three different quadrupole gradients (a) Bqkqfl = 200

G/cm, (b) Bqkqfl = 400 G/cm and (c) Bqkqfl = 600 G/cm. Figure 7 compares the

numerically (-) and analytically (e) obtained temporal growth rates. The comparison of

numerically obtained (hashed area) and analytically obtained (0) group velocities is shown

in Fig. 8.

The boundaries of the instability regime predicted by Eqs. (31) and (33), in the limit

of zero beam current, are in good agreement with numerically obtained boundaries.

Numerical verification of the weak unstable regime (V) was carried out by varying the

energy of the electron beam while holding the rest of the parameters constant: quadrupole

gradient of Bqkqfl = 200 G/cm, quadrupole wave number of kq = 0.5 cm- I , the waveguide

radius of rg = 1.5 cm and current Ie = 1 kA. For -y > 2.85, the beam is in the unstable

regime (1), while for -y < 2.85, the beam is in the unstable regime (V). The boundary

for the instability is given by Eq. (33). Small growth rates are observed numerically for

< 2.85 from the first order dispersion relation (23), (see Fig. 9).

For larger current and smaller quadrupole gradient, the difference of growth rates

between regime (I) and (V) is much larger. Figure 10 is a plot of the temporal growth

rates for different values of -yo for the parameters: quadrupole gradient of Bqkqfi = 100

G/cm, quadrupole wave number of kq = 0.5 cm - I, the waveguide radius of rg = 1.5 cm

14



and current I = 10 kA.

In fact, instabilities at the intersection of unstable beam mode (32b) and all other

waveguide modes also exist in the electromagnetic unstable region (I), except that their

growth rate is much smaller, (see the small blip at w/c :- 0.672 of Fig. 5).

15



VI. Summary and Comments

Electromagnetic instability on an intense beam in a FODO lattice was studied by

deriving and analyzing a dispersion relation, which is a matrix equation of infinite dimen-

sions. We showed that numerical solutions of an appropriately truncated matrix equation

give growth rates in excellent agreement with the exact growth rates as determined from

Floquet Theory.5 . Furthermore, analytical growth rates were obtained and are in good

agreement with numerical solutions of the dispersion relation. Stability boundaries in pa-

rameter space were established and verified. The analysis will be extended to consider

cases which include an additional nonzero axial (solenoidal) field.

The nature of the instability is such that growth should be observable for high current

(> 100A), moderate energy (-y < 100) electron beams. Furthermore, the group velocity of

the instability is slower than the beam velocity so that, in general, growth will not be ob-

served in beam pulses of less than several nanoseconds for these parameters. For instance,

this instability is not know.to have been observed in rf linear accelerators, presumably

because the growth rates are too small and/or the electron beam pulse length is short.

Ion beams are not expected to produce electromagnetic instabilities because ion beams

are typically very slow, i.e., 3 :< 0.2. The parameters of typical ion beam falls in the weak

unstable regime of the instability diagram. Damping of the TE11 mode could easily be

accomplished with finite Q values in the waveguide or the accelerator cavity.

Any high current induction driven electron accelerator utilizing FODO lattices would

be susceptible to this instability under the idealized conditions stated here. Realistic

effects, such as energy spread, nonlinear mode mixing, wave saturation may significantly

reduce the effect of the instability.
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Appendix A: Proton or Ion Beams

For proton or ion beams, the coefficients of the dispersion relation are modified. We

will consider ion beams with velocity vi, mass ni, charge per ion g and ion current Ii

gevini(7rrb), where ni is the ion density particle density and rb is the ion beam radius.

The complete dispersion relation is identical to Eq. (20), with the definitions of several

constants replaced by those given here:

q = ge Bq, (A.1)

Kq = Vqv, (A.2)

g 2 e2  gel
v= - ni(rrb) = , (A.3)

mic2  mivic2

and

2  v (A.4)kb 11 7"

Dominant instability exists if the beam mode

k+(-kq/2 + kq/4 - K)-w/v=0 (A.5)

intersects the W- 1 = 0 waveguide mode. Weak instabilities exist at intersections of (A.5)

with other electromagnetic waveguide modes.
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Fig. 1. Instability diagram in the limit of zero beam current.
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and (c) Bqkqfi = 600 G/cm, while keeping all the parameters the same as Fig. 2.

The analytically calculated growth rates are indicated by (.).
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